
The Three R’s of Dependability http://cis.nbi.ac.uk

The three R’s of
dependability

Paul Fretter

We need to feel that we can depend on computer services or

systems, to a greater or lesser degree, according to their

importance, exposure and development status. Almost by

definition, critical systems need to be highly dependable,

whereas faults or outages can be tolerated in non-essential

and development systems. In this short article, I attempt to

put into words what I think are the core components of the

intuition or ‘gut-feeling’ that the seasoned sysadmin or

service manager will possess. I propose the Dependability of

a system can be described as a function of three properties:

Reliability, Resilience and Robustness, specifically according to

three simple questions.

Reliability To what extent can/will the system be relied upon to behave consistently, for a

given set of initial conditions and inputs, and return consistently accurate and

timely responses or outputs?

Resilience To what extent can/will the system continue to operate reliably, and with little or

no interruption, in the event of a hardware or software component failure?

Robustness To what extent can/will the system continue to operate reliably under abnormal

load conditions, or in the event of a spurious or malformed input/request, or even

a malicious attack?

If you bring one of your own systems to mind, and ask yourself these three basic questions, I suspect you

will already have a reasonable feel for how dependable it is without looking any further. Whether you

are planning a new system, or assessing something that already exists, the same questions can be

applied.

To go into more depth, to convince yourself or to communicate to others, you can qualify your

assessment further with a checklist of the factors you consider important to each question, and the table

below illustrates a few examples.

Reliable

Dependable

The Three R’s of Dependability http://cis.nbi.ac.uk

Dependability Checklist (illustrative example)

Reliability Resilience Robustness

Code and System:

• Are the algorithms proven and is
the code tested to give correct
and consistent results?

• Change control.

• Are results or output delivered in
a consistent timeframe?

• Is start-up behaviour consistent
after un/controlled shutdown or
restart.

• Interaction with other systems
tested.

Data:

• Are routine data consistency
checks performed?

• Data provenance and audit trail

• Data accuracy and relevance

Hardware:

• dual PSU, ECC RAM

• RAID, EC storage, hot spare HDD

• Failure detection and notification

Code and System:

• Failure detection and graceful
handling

• HA clustering, VM migration

• Checkpoints and snapshots

• Data/system backup

• Handling failure of other
interacting systems

Network:

• Multi-homed

• Diverse routes

Environment:

• Protected power - UPS and
generator

• N+’n’ cooling

Hardware:

• Clean, filtered power supply

Code and System:

• Input masking

• Handling unmapped requests or
unanticipated state

• Patch maintenance

• Behaviour under heavy load

• Protect CPU, RAM and disk for
core functions

Security:

• Authentication/Authorisation

• DoS, Intrusion detection

• OS hardening

• Data ACLs

Network:

• Intrusion prevention, ACLs

This approach can help to highlight the basics quickly and give you a ‘feeling’ for how much effort is

required to achieve an acceptable level of Dependability, and thus far with no mention of scoring or

quantifying, making it simple to scope out a new project.

I want to leave it there, as a quick method of making a qualitative assessment.

To extend this into a formal quantitative assessment, it would be straightforward to devise a scoring

system covering the factors within each question. In a future article, I will suggest ways to apply this.

Paul Fretter, August 2017

