
17/05/2016, 20:04Special considerations when running Java programs - CiSSupport - CiS

Page 1 of 3http://docs.cis.nbi.ac.uk/display/CIS/Special+considerations+when+running+Java+programs

Pages /… /  Advanced Topics (UV)

Created by paul fretter (NBI), last modified on May 13, 2016

Special considerations when running Java programs

 

When running Java programs on a large system, such as the UV it is important to constrain the behaviour of the JVM
Garbage Collection (GC).  Please ensure that you set the following environment variable in your job script, before
executing your Java program, which will tell the JVM to use only a single thread for garbage collection (this typically is
satisfactory for most cases).

Failure to so this will result in the JVM spawning a very large number of processes for garbage collection, resulting in
slow performance of your code and potentially a significant impact on other users of the system.
 

You can also manually set the parallel GC thread count using the following option:
 

 

Example:

JAVA_OPTS="-XX:+UseSerialGC"

JAVA_OPTS="-XX:ParallelGCThreads=2"			#	use	2	threads	for	GC

[fretter@UV2K3	test]$	qsub	-I																																		#	let's	be	nice	and	do	this	in	an	interactive	session	via	the	scheduler
qsub:	waiting	for	job	32865.UV00000010-P003	to	start
qsub:	job	32865.UV00000010-P003	ready
	
[fretter@UV2K3	test]$	cd	test
[fretter@UV2K3	test]$	source	jdk-1.7.0_25																						#	source	the	JDK	wrapper
[fretter@UV2K3	test]$	javac	HelloWorld.java																				#	compile	my	java	program
[fretter@UV2K3	test]$	java	-XX:ParallelGCThreads=2	HelloWorld		#	execute	HelloWorld	with	a	max	of	2	threads	for	GC
	
[fretter@UV2K3	test]$	ps	-ef	|	grep	fretter	|	grep	[j]ava						#	find	my	java	process	id
fretter		282390	256941		0		1970	pts/16			00:00:00	java	-XX:ParallelGCThreads=2	HelloWorld
	
[fretter@UV2K3	test]$	jstack	282390																												#	get	a	thread	dump;	note	the	result	is	only	2	threads	for	GC
{...	stuff	deleted	...}
"VM	Thread"	prio=10	tid=0x00007ffff008d800	nid=0x44f1a	runnable
"GC	task	thread#0	(ParallelGC)"	prio=10	tid=0x00007ffff0016000	nid=0x44f18	runnable
"GC	task	thread#1	(ParallelGC)"	prio=10	tid=0x00007ffff0018000	nid=0x44f19	runnable
"VM	Periodic	Task	Thread"	prio=10	tid=0x00007ffff00f8000	nid=0x44f21	waiting	on	condition
JNI	global	references:	110

http://docs.cis.nbi.ac.uk/collector/pages.action?key=CIS&src=breadcrumbs-collector
http://docs.cis.nbi.ac.uk/pages/viewpage.action?pageId=6160755&src=breadcrumbs-parent
http://docs.cis.nbi.ac.uk/display/~fretter
http://docs.cis.nbi.ac.uk/pages/diffpagesbyversion.action?pageId=8684633&selectedPageVersions=11&selectedPageVersions=12
http://docs.cis.nbi.ac.uk/display/CIS/Special+considerations+when+running+Java+programs


17/05/2016, 20:04Special considerations when running Java programs - CiSSupport - CiS

Page 2 of 3http://docs.cis.nbi.ac.uk/display/CIS/Special+considerations+when+running+Java+programs

Like Be the first to like this

 

Note: if using the -XX options on the java command line they must be specified BEFORE the name of your java program.
 Placing them after will not produce an error, but also they will not work!

 

Background
When the JVM is launched it will enumerate all the CPU cores available on the system by reading /proc/cpuinfo.  This is
whether or not it actually has the ability to use them all, and will then spawn a number (N) of garbage collectors according
to the following formula: 
 
N = ( ncpus <= 8 ) ? ncpus : 3 + ( ( ncpus * 5 ) / 8 )
 

In the case of the UV systems installed here, /proc/cpuinfo will report up to 1024 cores.  Thus a very large number of GC
threads will be spawned, which will contend with each other and will cause a general 'slow down' of the system, which will
affect other users.

While the UV systems have the largest CPU count, this idiosyncrasy of Java GC is not limit to large systems.  If not
throttled this can also impact the performance of jobs when running on the SLURM cluster.  This is because the SLURM
scheduler will bind jobs to specific CPUs.  In a scenario where we submit a single threaded job via SLURM and request a
single CPU, if the job were to be scheduled onto a node with 32 CPUs it would result in the java application running all
threads on the same CPU - this would be ~34 threads (23 GC threads + ~10 JVM worker threads + 1 main application).
This results in all the threads competing for the single resource.

The following table shows the number of garbage collection threads to CPUs if not limit is imposed ...

Host CPUs GC Threads

1 1

2 2

4 4

8 8

16 13

32 23

64 43

128 83

256 163

512 323

1024 643

 
If you require a different approach to garbage collection (object / heap management) please get in touch with the CiS
Service Desk, or contact your Institute's Scientific Computing support group.
 

 No labels

http://docs.cis.nbi.ac.uk/display/CIS/Special+considerations+when+running+Java+programs
http://docs.cis.nbi.ac.uk/display/CIS/Interacting+with+Institutes


17/05/2016, 20:04Special considerations when running Java programs - CiSSupport - CiS

Page 3 of 3http://docs.cis.nbi.ac.uk/display/CIS/Special+considerations+when+running+Java+programs

http://www.atlassian.com/

